
Improving Analysis Tool Documentation for the HSF
This is a proposal by the HEP Software Foundation (HSF) to support its participation in the 2022
Google Season of Docs program. CERN-HSF and the mentors involved in this proposal have
been involved in GSoC and GSoD programs for many years. CERN-HSF projects have
benefited significantly and numerous participants have gone on to continue working with us as
they have advanced in their open-source career.

The HEP Software Foundation Organization
High Energy Physics (HEP) is an exciting field where large collaborations of scientists collect
and analyze petabytes of data from high-energy physics experiments, such as those at the
Large Hadron Collider, hosted at the CERN laboratory in Geneva, Switzerland. Some of the
questions that we collectively ask are:

● what are the fundamental blocks that make up our Universe?
● what is the nature of dark matter and dark energy?
● what is the nature of the asymmetry between matter and antimatter?
● what was early Universe like?

To answer these questions, particle physicists build software to simulate and analyze what
happens in particle physics detectors. The scale of the needed research software and the
computing facilities needed to use it are vast compared to most other scientific fields. Plans for
exabyte scale data sets means that particle physics researchers must push technologies to
enable their science.

The HEP Software Foundation (HSF) brings together researchers participating in the GSoC and
GSoD programs. Particle physics researchers started in GSoC in 2011, subsequently joining
together to use HSF as an umbrella organization in 2017.

Season of Docs Project
Particle physics relies heavily on open-source codes that compute key quantities for both theory
and experiment. Often such codes have been developed for many years, with early
documentation rendered incorrect or incomplete by later developments. Key user-facing
information can be very difficult to find (e.g. in automatically generated code-interface
documentation). It can be difficult for new physics-oriented users and contributors to get
involved: the docs that exist are more for the developers and often assume too much technical
prowess.

We seek to advance the documentation in two areas of HEP research: interactive analysis
based on C++; and reinterpretation of analysis results. Our intent is to build the sort of
documentation that enables user engagement while being easy to update as our codes continue
to evolve.

Interactive Analysis
HEP researchers have developed several unique software technologies in the area of data
analysis. Over the last decade we developed an interactive, interpretative C++ interpreter (aka
REPL) as part of the ROOT data analysis project. We invested a significant effort to replace
CINT, the C++ interpreter used until ROOT5, with a newly implemented REPL based on LLVM –
Cling. Cling is a core component of ROOT and has been in production since 2014. Cling is also
a standalone tool, which has a growing community outside of our field. It is recognized for
enabling interactivity, dynamic interoperability and rapid prototyping capabilities for C++
developers. For example, if you are typing C++ in a Jupyter notebook you are using the
xeus-cling Jupyter kernel.

We are in the midst of an important project to address one of the major challenges to ensure
Cling’s sustainability and to foster that growing community: moving most parts of Cling into
LLVM. Since LLVM version 13 we have a version of Cling called Clang-Repl. As we advance the
implementation and generalize its usage we aim for improving the overall documentation
experience in the area of interactive C++.

Reinterpretation

“Reinterpretation” codes aim to reuse data to make new statements about fundamental physics.
These codes are meant for wide use in the physics community, but for that to happen much
better user-facing documentation needs to be created. We will focus on improvements to the
Rivet and Gambit projects, two largely C++ physics applications for reinterpretation, which
require a range of technical skills -- from command-line Unix to C++ programming -- in order to
get the most from their capabilities.

Scope
This project will audit the existing documentation for the Clang-Repl (interactive C++), Rivet
(Reinterpretation) and Gambit (Reinterpretation) codes. Identify gaps in the information or
presentation from the point-of-view of new, physics-oriented users.

The scope of the reinterpretation component continues with:
● Create onboarding guides for Rivet and Gambit, incorporating elements of tutorial,

explanations of software and physics (with input from supervisors!) rationales in the
designs, and clear explanations of best practice in system use and writing of
user-provided plugins.

● Improve the generated documentation for the Rivet and Gambit codes (e.g. existing
Doxygen and Sphinx) to be more user-oriented, and easier to browse. Making the API
documentation “future-proof” and synced with new releases is a key goal, as both
codebases are actively evolving.

● Incorporate feedback from documentation testers in the project and the user community.

The scope of the interactive analysis component continues with:

https://github.com/root-project/cling/
https://github.com/jupyter-xeus/xeus-cling
https://github.com/jupyter-xeus/xeus-cling
https://rivet.hepforge.org
https://rivet.hepforge.org
https://gambit.hepforge.org

● Demonstrate interactive Clang-Repl use cases in the LLVM documentation by
developing basic documentation and tutorials apt for Clang-Repl

● Develop advanced Clang-Repl tutorials integrate Clang-Repl into Xeus and contribute to
a community blog post on them.

● Review and enhance the developers’ documentation, examples and tutorials

Work that is out-of-scope for this project:
● Candidates are not expected to have detailed physics or interactive compilation

knowledge. Technical writers will focus on explaining the technical systems, working
closely with our research teams to ensure the end results have the appropriate mix of
scientific reasoning and technical detail.

● Candidates are not required to have past experience with a particular set of
documentation tools.

Success metrics
We will track the numbers of pull requests, Docker, and tarball downloads of the Rivet and
Gambit packages, and the numbers of submitted plugins and published papers citing them. We
will consider the project successful if the numbers of pulls/downloads increase by 20% on the
tutorial branches, and the numbers of contributions/publications increases by 10% within a year
of the new documentation becoming available.

The interactive analysis development success metrics include: publishing at least 2 blog posts
on blog.llvm.org; publishing at least 3 LLVM help document in clang.llvm.org/docs/; publish at
least 2 tutorials about more advanced clang-repl features at compiler-research.org/tutorials/;
Reviewing and improving developers’ documentation.

Timeline
The project can potentially involve 3 technical writers. As the area is specialized, we expect a
month of orientation (June), during which the documentation audit will be performed for all
project components.

For the reinterpretation areas, July-August will be spent on developing the new onboarding
guides and tutorial material, and incorporating feedback. September will be spent on improving
and integrating the new material with the packages’ auto-generated documentation.

The interactive analysis technical work will nominally continue through October, however of
course the timeline can be adopted for any scheduling constraints of writers. Primary emphasis
is initially on tutorial and notebook development, and subsequently on developer
documentation.

Here we summarize a proposed high-level schedule of all project components.

Dates Activities and Goals
June Orientation & documentation audit.

1 week for meeting the team; 1 week for getting into the
relevant technologies; 1 week for environment setup; 1
week for documentation audit.

July Create onboarding guides and tutorials for Rivet and
Gambit

Demonstrate interactive C++ use cases in the LLVM
documentation by developing basic documentation and
tutorials apt for Clang-Repl (3 weeks). 1 week buffer
period.

August Test and improve guides for Rivet and Gambit

Develop advanced Clang-Repl tutorials integrate Clang-
Repl into Xeus (2 weeks). 2 weeks for communicating with
the Xeus-Cling team and possibly porting the kernel to
LLVM

September Integration with generated code-doc systems in Rivet and
Gambit

Write a blog post on a working notebook demonstrating a
tutorial (1 week). Review and enhance the developers’
documentation, examples and tutorials (3 weeks)

October 1 week buffer. 2 weeks integration and validation of the
written documentation, 1 week audit and outlining further
work (if applicable).

Budget
The budget is separated into separate items for technical writer support for each project
compiler (Interactive analysis/clang-repl code, reinterpretation/Rivet code, and
reinterpretation/Gambit code). Budgets were derived assuming the same wage per effort across
each project component.

Item Amount Running
total

Notes/justifications

Technical writer for
Clang-Repl
documentation

6500 6500

Volunteer Stipends 1000 7500 Stipend for two student mentors ($500/each)
to assist with Clang-Repl tutorial development

Technical writer for
Rivet documentation

3750 12250

Technical writer for
Gambit
documentation

3750 15000

Previous experience with GSoC and GSoD
Previous participation in Season of Docs, Google Summer of Code or others: CERN-HSF
has participated in GSoC since 2017, and has two previous projects with Season of Docs (2019
and 2020). All three of the project mentors have previous experience in GSoC: a total of around
30 student projects and between 2 and 10 years of participation each. In addition, mentors work
in numerous student programs including those sponsored by CERN and the US National
Science Foundation (NSF), are experienced in multidisciplinary environments, and routinely
handle remote working and supervision roles.

Previous experience with technical writers or documentation: Mentors have previous
experience with semi-automated code documentation using Doxygen and Sphinx, developing
wiki/MarkDown based self-guided tutorials, interactive tutorials, and LaTeX/PDF-based manuals.
User experience with these materials will be an important component of guiding our mentorship
in this project. It will help us focus efforts on the key aspects and enhance the overall success of
the project.

